递归函数是指在函数体内调用自身的函数。递归是一种强大的编程技术,它将复杂问题分解为相似但规模更小的子问题来解决。
递归的基本概念
递归的组成要素
#include <iostream>
// 基本递归示例:计算阶乘
int factorial(int n) {
// 1. 基本情况(递归终止条件)
if (n <= 1) {
return 1;
}
// 2. 递归情况(函数调用自身)
return n * factorial(n - 1);
}
// 递归过程的可视化
int factorialWithTrace(int n, int depth = 0) {
// 打印缩进
for (int i = 0; i < depth; ++i) {
std::cout << " ";
}
std::cout << "factorial(" << n << ") 开始" << std::endl;
int result;
if (n <= 1) {
result = 1;
for (int i = 0; i < depth; ++i) {
std::cout << " ";
}
std::cout << "基本情况: factorial(" << n << ") = " << result << std::endl;
} else {
result = n * factorialWithTrace(n - 1, depth + 1);
for (int i = 0; i < depth; ++i) {
std::cout << " ";
}
std::cout << "递归情况: factorial(" << n << ") = " << n << " * factorial(" << (n-1) << ") = " << result << std::endl;
}
return result;
}
int main() {
std::cout << "=== 递归基本概念 ===" << std::endl;
// 简单调用
std::cout << "5! = " << factorial(5) << std::endl;
std::cout << "\n=== 递归过程追踪 ===" << std::endl;
int result = factorialWithTrace(4);
std::cout << "最终结果: " << result << std::endl;
return 0;
}
递归 vs 迭代
#include <iostream>
#include <chrono>
// 递归版本的斐波那契数列(效率低)
long long fibonacciRecursive(int n) {
if (n <= 1) {
return n;
}
return fibonacciRecursive(n - 1) + fibonacciRecursive(n - 2);
}
// 迭代版本的斐波那契数列(效率高)
long long fibonacciIterative(int n) {
if (n <= 1) {
return n;
}
long long prev2 = 0;
long long prev1 = 1;
long long current;
for (int i = 2; i <= n; ++i) {
current = prev1 + prev2;
prev2 = prev1;
prev1 = current;
}
return current;
}
// 优化的递归版本(记忆化)
#include <unordered_map>
std::unordered_map<int, long long> memo;
long long fibonacciMemoized(int n) {
if (n <= 1) {
return n;
}
// 检查是否已经计算过
if (memo.find(n) != memo.end()) {
return memo[n];
}
// 计算并存储结果
memo[n] = fibonacciMemoized(n - 1) + fibonacciMemoized(n - 2);
return memo[n];
}
// 性能测试
void performanceTest() {
std::cout << "=== 性能比较 ===" << std::endl;
int n = 40;
// 测试递归版本
auto start = std::chrono::high_resolution_clock::now();
long long result1 = fibonacciRecursive(n);
auto end = std::chrono::high_resolution_clock::now();
auto duration1 = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "递归版本 fib(" << n << ") = " << result1
<< ", 耗时: " << duration1.count() << "ms" << std::endl;
// 测试迭代版本
start = std::chrono::high_resolution_clock::now();
long long result2 = fibonacciIterative(n);
end = std::chrono::high_resolution_clock::now();
auto duration2 = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "迭代版本 fib(" << n << ") = " << result2
<< ", 耗时: " << duration2.count() << "ms" << std::endl;
// 测试记忆化版本
memo.clear(); // 清空缓存
start = std::chrono::high_resolution_clock::now();
long long result3 = fibonacciMemoized(n);
end = std::chrono::high_resolution_clock::now();
auto duration3 = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "记忆化版本 fib(" << n << ") = " << result3
<< ", 耗时: " << duration3.count() << "ms" << std::endl;
}
int main() {
performanceTest();
return 0;
}
经典递归算法
数学计算
#include <iostream>
#include <string>
// 1. 最大公约数(欧几里得算法)
int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// 2. 幂运算
double power(double base, int exponent) {
// 基本情况
if (exponent == 0) {
return 1.0;
}
if (exponent == 1) {
return base;
}
// 处理负指数
if (exponent < 0) {
return 1.0 / power(base, -exponent);
}
// 优化:快速幂算法
if (exponent % 2 == 0) {
double half = power(base, exponent / 2);
return half * half;
} else {
return base * power(base, exponent - 1);
}
}
// 3. 数字反转
int reverseNumber(int num, int reversed = 0) {
if (num == 0) {
return reversed;
}
return reverseNumber(num / 10, reversed * 10 + num % 10);
}
// 4. 数字各位数之和
int digitSum(int num) {
if (num == 0) {
return 0;
}
return (num % 10) + digitSum(num / 10);
}
// 5. 判断回文数
bool isPalindrome(const std::string& str, int start = 0, int end = -1) {
if (end == -1) {
end = str.length() - 1;
}
if (start >= end) {
return true;
}
if (str[start] != str[end]) {
return false;
}
return isPalindrome(str, start + 1, end - 1);
}
int main() {
std::cout << "=== 数学递归算法 ===" << std::endl;
// 最大公约数
std::cout << "gcd(48, 18) = " << gcd(48, 18) << std::endl;
std::cout << "gcd(100, 25) = " << gcd(100, 25) << std::endl;
// 幂运算
std::cout << "power(2, 10) = " << power(2, 10) << std::endl;
std::cout << "power(3, -2) = " << power(3, -2) << std::endl;
// 数字反转
std::cout << "reverse(12345) = " << reverseNumber(12345) << std::endl;
std::cout << "reverse(9876) = " << reverseNumber(9876) << std::endl;
// 数字各位数之和
std::cout << "digitSum(12345) = " << digitSum(12345) << std::endl;
std::cout << "digitSum(999) = " << digitSum(999) << std::endl;
// 回文判断
std::cout << "isPalindrome('racecar') = " << isPalindrome("racecar") << std::endl;
std::cout << "isPalindrome('hello') = " << isPalindrome("hello") << std::endl;
return 0;
}
数据结构操作
#include <iostream>
#include <vector>
#include <algorithm>
// 1. 二分查找
int binarySearch(const std::vector<int>& arr, int target, int left, int right) {
if (left > right) {
return -1; // 未找到
}
int mid = left + (right - left) / 2;
if (arr[mid] == target) {
return mid;
} else if (arr[mid] > target) {
return binarySearch(arr, target, left, mid - 1);
} else {
return binarySearch(arr, target, mid + 1, right);
}
}
// 2. 快速排序
void quickSort(std::vector<int>& arr, int low, int high) {
if (low < high) {
int pivotIndex = partition(arr, low, high);
quickSort(arr, low, pivotIndex - 1);
quickSort(arr, pivotIndex + 1, high);
}
}
int partition(std::vector<int>& arr, int low, int high) {
int pivot = arr[high];
int i = low - 1;
for (int j = low; j < high; ++j) {
if (arr[j] <= pivot) {
++i;
std::swap(arr[i], arr[j]);
}
}
std::swap(arr[i + 1], arr[high]);
return i + 1;
}
// 3. 归并排序
void mergeSort(std::vector<int>& arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
merge(arr, left, mid, right);
}
}
void merge(std::vector<int>& arr, int left, int mid, int right) {
std::vector<int> temp(right - left + 1);
int i = left, j = mid + 1, k = 0;
while (i <= mid && j <= right) {
if (arr[i] <= arr[j]) {
temp[k++] = arr[i++];
} else {
temp[k++] = arr[j++];
}
}
while (i <= mid) {
temp[k++] = arr[i++];
}
while (j <= right) {
temp[k++] = arr[j++];
}
for (int i = 0; i < k; ++i) {
arr[left + i] = temp[i];
}
}
// 4. 数组求和
int arraySum(const std::vector<int>& arr, int index = 0) {
if (index >= arr.size()) {
return 0;
}
return arr[index] + arraySum(arr, index + 1);
}
// 5. 数组最大值
int arrayMax(const std::vector<int>& arr, int index = 0) {
if (index == arr.size() - 1) {
return arr[index];
}
int maxOfRest = arrayMax(arr, index + 1);
return std::max(arr[index], maxOfRest);
}
void printArray(const std::vector<int>& arr) {
for (int x : arr) {
std::cout << x << " ";
}
std::cout << std::endl;
}
int main() {
std::cout << "=== 数据结构递归操作 ===" << std::endl;
std::vector<int> arr = {64, 34, 25, 12, 22, 11, 90};
// 数组求和
std::cout << "数组: ";
printArray(arr);
std::cout << "数组和: " << arraySum(arr) << std::endl;
std::cout << "数组最大值: " << arrayMax(arr) << std::endl;
// 二分查找(需要排序后的数组)
std::vector<int> sortedArr = {11, 12, 22, 25, 34, 64, 90};
std::cout << "\n排序后数组: ";
printArray(sortedArr);
int target = 25;
int index = binarySearch(sortedArr, target, 0, sortedArr.size() - 1);
if (index != -1) {
std::cout << "找到 " << target << " 在索引 " << index << std::endl;
} else {
std::cout << "未找到 " << target << std::endl;
}
// 快速排序
std::vector<int> quickArr = arr;
std::cout << "\n快速排序前: ";
printArray(quickArr);
quickSort(quickArr, 0, quickArr.size() - 1);
std::cout << "快速排序后: ";
printArray(quickArr);
// 归并排序
std::vector<int> mergeArr = arr;
std::cout << "\n归并排序前: ";
printArray(mergeArr);
mergeSort(mergeArr, 0, mergeArr.size() - 1);
std::cout << "归并排序后: ";
printArray(mergeArr);
return 0;
}